Solicitud de información

Complementos para la Formación Disciplinar en la Especialidad de Matemáticas

Código Asignatura: 5398
Nº Créditos ECTS: 6
Duración: modalidad 12 meses: Semestral
modalidad 18 meses: Semestral
Idioma:
Castellano
Prueba final:
Plan de estudios:
Profesor(es):
Año académico:
2024-25

Descripción

La asignatura Complementos para la Formación Disciplinar en la Especialidad de Matemáticas es una asignatura de carácter optativa que consta de 6 créditos tiene por objetivo principal formar a los titulados universitarios a ser docentes y enseñar las matemáticas a nivel de secundaria y bachillerato, adquiriendo las competencias necesarias para ello.

Esta asignatura debe servir de base para reconstruir de manera activa y significativa los contenidos matemáticos que se imparten en los currículos de las etapas correspondientes trabajando la revisión, focalización y recapitulación de los conocimientos del docente y adaptándolos a nuestros alumnos de educación secundaria y bachillerato.

Antes de matricular la asignatura, verifique los posibles requisitos que pueda tener dentro de su plan. Esta información la encontrará en la pestaña "Plan de estudios" del plan correspondiente.

Competencias generales

  • Conocer los contenidos curriculares de la materia matemáticas en todas sus variantes.
  • Conocer el cuerpo de conocimientos didácticos en torno a los procesos de enseñanza y aprendizaje de las matemáticas.
  • Buscar, obtener, procesar y comunicar información (oral, impresa, audiovisual, digital o multimedia), transformarla en conocimiento y aplicarla en los procesos de enseñanza y aprendizaje en matemáticas.
  • Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio
  • Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades
  • Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Competencias específicas

  • Conocer el valor formativo y cultural de las materias correspondientes a la especialización y los contenidos que se cursan en las respectivas enseñanzas.
  • Conocer la historia y los desarrollos recientes de las materias y sus perspectivas para poder transmitir una visión dinámica de las mismas.
  • Conocer contextos y situaciones en que se usan o aplican los diversos contenidos curriculares.

Competencias transversales

  • Adquirir la capacidad de comunicarse de forma efectiva a través de los medios usuales, y en especial a través de las nuevas tecnologías de la información y la comunicación.
  • Habilidades cognoscitivas referidas a la capacidad de comprender y analizar las diferentes metodologías y herramientas que se aplican en la gestión del conocimiento de información especializada.
  • Capacidad de análisis y síntesis.
  • Razonamiento crítico y deductivo.
  • Capacidad de análisis y de toma de decisiones.
  • Aprendizaje autónomo.
  • Motivación por la calidad.

Resultados del aprendizaje

Adquirir los conocimientos complementarios en la especialidad de Matemáticas, necesarios para los procesos enseñanza-aprendizaje en educación secundaria.

Metodología

La metodología adoptada en esta asignatura para el aprendizaje y evaluación de sus contenidos se encuentra adaptada al modelo de formación continuada y a distancia de la UDIMA. Los conocimientos de la asignatura se adquieren a través del estudio razonado de todas las unidades didácticas del manual, así como del material didáctico complementario que se ponga a disposición de los estudiantes en el aula virtual. Además, se complementa con la acción tutorial, que incluye asesoramiento personalizado, intercambio de impresiones en los debates habilitados en foros y demás recursos y medios que ofrecen las nuevas tecnologías de la información y la comunicación. Por otra parte, el aprendizaje también se apoya en la realización de las actividades previstas en el aula virtual, y que vienen recogidas en el apartado “Contenidos y programación”.

Para ampliar esta información, se recomienda consultar la pestaña “Metodología y exámenes” de la titulación.

Dedicación requerida

La dedicación requerida para esta asignatura de 6 créditos ECTS es de 150 horas, que se encuentran distribuidas de la siguiente manera:

  • Estudio de las Unidades Didácticas: 30%
  • Lectura de artículos: 10%
  • Supuestos y casos prácticos: 20%
  • Búsqueda de información: 10%
  • Redacción o realización de informes: 20%
  • Acción tutorial: 5%
  • Evaluación: 5%

Tutorías

El profesor aporta un seguimiento individualizado de la actividad del estudiante para asegurar las mejores condiciones de aprendizaje mediante la tutorización a través de las herramientas de la plataforma educativa y/o de las tutorías telefónicas. En estas tutorías los estudiantes pueden consultar a los profesores las dudas acerca de la materia estudiada.

Materiales didácticos

Para el desarrollo del aprendizaje sobre el que versará el examen final se han seleccionado materiales didácticos y/o manuales, a partir de los cuales se estudiarán las unidades didácticas que se corresponden con la descripción de los contenidos de la asignatura:

Los materiales que se utilizarán serán los apuntes correspondientes a cada una de las unidades, que estarán disponibles en el aula virtual de la asignatura, junto con la documentación complementaria que se indique en cada unidad.

Además, se recomienda la siguiente bibliografía de consulta voluntaria:

  • Courant, R. y Robbins, H. (1979). ¿Qué es la matemática? Madrid: Aguilar.
  • Kline, M. (1972). El pensamiento matemático de la antigüedad a nuestros días. Alianza Editorial.
  • Gascón, J. (2001). Incidencia del modelo epistemológico de las matemáticas sobre las prácticas docentes. RELIME. Revista latinoamericana de investigación en matemática educativa, 4(2), 129-160.

Finalmente, el profesor podrá poner a disposición del estudiante cualquier otro material complementario voluntario al hilo de las unidades didácticas o en una carpeta de material complementario.

Contenidos y programación

SEMANAS UNIDADES DIDÁCTICAS ACTIVIDADES DIDÁCTICAS
Semanas 1 y 2 Unidad 1. Teorías de conocimiento matemático
1.1. Teorías epistemológicas de las matemáticas
1.2. Modelos docentes
1.3. Teoría de la transposición didáctica
  • Estudio de la unidad
Semanas 3 y 4 Unidad 2. El currículo de matemáticas en secundaria
2.1. Organización de la materia de matemáticas en secundaria
2.2. Noción de currículo
2.3. Estructura del currículo de matemáticas
  • Estudio de la unidad
  • Actividad de Aprendizaje 1
Semana 5 Unidad 3. Razonamiento matemático
3.1. Algunas definiciones y ejemplos
3.2. Razonamiento inductivo
3.3. Razonamiento deductivo
  • Estudio de la unidad
Semanas 6 y 7 Unidad 4. Evaluación centrada en la competencia matemática
4.1. Marco de PISA 2022
4.2. Definición de competencia matemática
4.3. Organización del dominio
4.4. Diseño de pruebas competenciales
  • Estudio de la unidad
  • Actividad de Evaluación Continua 1
  • Control 1
Semanas 8 y 9

Unidad 5. Sentido numérico
5.1. Conteo
5.2. Cantidad
5.3. Sentido de las operaciones
5.4. Relaciones
5.5. Razonamiento proporcional
5.6. Educación financiera

  • Estudio de la unidad
Semanas 10 y 11 Unidad 6. Sentido de la medida
6.1. Magnitud
6.2. Medición
6.3. Estimación y relaciones
6.4. Cambio
  • Estudio de la unidad
  • Actividad de Evaluación Continua 2
Semanas 12 y 13

Unidad 7. Sentido espacial
7.1. Figuras geométricas de dos y tres dimensiones
7.2. Localización y sistemas de representación
7.3. Movimientos y transformaciones
7.4. Visualización, razonamiento y modelización geométrica

  • Estudio de la unidad
Semana 14 y 15

Unidad 8. Sentido algebraico
8.1. Patrones
8.2. Modelo matemático
8.3. Variable
8.4. Igualdad y desigualdad
8.5. Relaciones y funciones
8.6. Pensamiento computacional

  • Estudio de la unidad
Semana 16

Unidad 9. Sentido estocástico
9.1. Organización y análisis de datos
9.2. Incertidumbre
9.3. Inferencia
9.4. Distribuciones de probabilidad

  • Estudio de la unidad
  • Actividad de Aprendizaje 2
  • Control 2
Resto de semanas hasta finalización del semestre Estudio y preparación para el examen final, celebración final presencial y cierre de actas.

Sistema de evaluación

Durante el estudio de esta asignatura, el proceso de evaluación del aprendizaje es continuo y contempla la realización de:

- Una evaluación continua a lo largo del curso a través de acciones didácticas que supone el 40% de la nota final. Incluye la realización de los diferentes tipos de actividades de evaluación, de aprendizaje y controles.

  • Actividades de aprendizaje (AA): actividades que permiten evaluar el desarrollo de las competencias al hilo del desarrollo de las unidades didácticas. Pueden adoptar el formato de foro, cuestionario, glosario u otros.
  • Controles: actividades que permiten evaluar la adquisición de aspectos conceptuales y prácticos de la asignatura. Toman la forma de cuestionarios.
  • Actividades de evaluación continua (AEC): actividades que permitan evaluar el alcance de ciertos hitos académicos a lo largo del cuatrimestre. Pueden adoptar el formato de informes, cuestionarios, casos prácticos, comentarios de texto, etc. Al tratarse de actividades obligatorias, se permite su entrega en los 10 días posteriores a su fecha de cierre, suponiendo este retraso una penalización de -2 puntos en la calificación final de la actividad.

- Un examen final presencial que supone el 60% de la nota final. Está dirigido a la valoración de las competencias y conocimientos adquiridos por el estudiante. El examen se evaluará de 0 a 10, tendrá una duración estimada de 90 minutos y será de tipo teórico-práctico, con dos preguntas de desarrollo y un caso práctico.

Para poder presentarse al examen final presencial de esta asignatura, el estudiante tendrá que haber realizado los dos controles obligatorios, independientemente de la calificación obtenida, así como haber superado al menos una de las dos actividades de evaluación continua (AEC) ofertadas (obtener una puntuación igual o superior a 5).

El estudiante que se presente al examen sin cumplir requisitos, será calificado con un cero en el examen final presencial y consumirá convocatoria.

Cuadro resumen del sistema de evaluación

Tipo de actividad Número de actividades planificadas Peso calificación
Actividades de aprendizaje
2
10%
Actividades de Evaluación Continua (AEC)
2
20%
Controles
2
10%
Examen final
Si
60%
TOTAL 100%

Para la superación de esta asignatura, el estudiante deberá realizar con carácter obligatorio una prueba final dirigida a verificar las competencias y conocimientos adquiridos durante su desarrollo.

Para aprobar la asignatura, es necesario obtener una calificación mínima de 5 en el examen final, así como en la calificación total del curso, una vez realizado el cómputo ponderado de las calificaciones obtenidas en las actividades didácticas y en el examen final.

Si un estudiante no aprueba la asignatura en la convocatoria ordinaria podrá examinarse en la convocatoria de septiembre. El estudiante que no se presente a la convocatoria ordinaria y extraordinaria, perderá automáticamente todos los trabajos realizados a lo largo del curso. Deberá en este caso matricularse de nuevo en la asignatura.

Las fechas previstas para la realización de todas las actividades se indican en el aula virtual de la asignatura.

Originalidad de los trabajos académicos

Según la Real Academia Española, “plagiar” significa copiar en lo sustancial obras ajenas dándolas como propias. Dicho de otro modo, plagiar implica expresar las ideas de otra persona como si fuesen propias, sin citar la autoría de las mismas. Igualmente, la apropiación de contenido puede ser debida a una inclusión excesiva de información procedente de una misma fuente, pese a que esta haya sido citada adecuadamente. Teniendo en cuenta lo anterior, el estudiante deberá desarrollar sus conocimientos con sus propias palabras y expresiones. En ningún caso se aceptarán copias literales de párrafos, imágenes, gráficos, tablas, etc. de los materiales consultados. En caso de ser necesaria su reproducción, esta deberá contemplar las normas adecuadas para la citación académica.

Los documentos que sean presentados en las actividades académicas podrán ser sometidos a diferentes mecanismos de comprobación de la originalidad (herramientas antiplagios que detectan coincidencias de texto con otras fuentes, comparación con trabajos de otros estudiantes, comparación con información publicada en Internet, etc). El profesor valorará si el trabajo presentado cuenta con los criterios de originalidad exigidos o, en su caso, se atribuye adecuadamente la información no propia a las fuentes correspondientes. La adjudicación como propia de información que corresponde a otros autores podrá suponer el suspenso de la actividad.

Los documentos presentados en las actividades académicas podrán ser almacenados en formato papel o electrónico y servir de comparación con otros trabajos de terceros, a fin de proteger la originalidad de la fuente y evitar la apropiación indebida de todo o parte del trabajo del estudiante. Por tanto, podrán ser utilizados y almacenados por la universidad, a través del sistema que estime, con el único fin de servir como fuente de comparación de cualquier otro trabajo que se presente.

Sistema de calificaciones

El sistema de calificación de todas las actividades didácticas es numérico del 0 a 10 con expresión de un decimal, al que se añade su correspondiente calificación cualitativa:

0 – 4.9: Suspenso (SU)
5.0 – 6.9: Aprobado (AP)
7.0 – 8.9: Notable (NT)
9.0 – 10: Sobresaliente (SB)

(RD 1125/2003, de 5 de septiembre, por lo que se establece el sistema europeo de créditos y el sistema de calificaciones en las titulaciones universitarias de carácter oficial y con validez en todo el territorio nacional).